

民間航空機エンジン事業と今後の課題

- ー IAE事業を例にして ー
 - 1. IAE事業について
 - 2. 変遷と今後
 - 3. 課題

2023年6月6日

一般財団法人日本航空機エンジン協会

1. IAE事業について

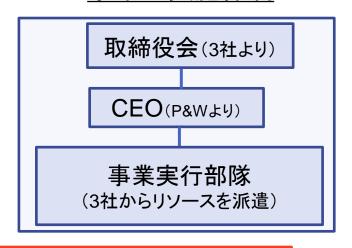
- ◆ 民間機の最大市場である150-200席クラスの単通路機用エンジン事業を行う国際コラボ JVである。(競合相手は同じく国際コラボJVのCFMI)
- ◆ IAE AGはV2500の事業体として1983年に設立、IAE LLCはPW1100G-JMの事業体として2011年に設立
- ◆ V2500の販売台数は約8,000台、PW1100G-JMは10,000台以上を見込んでいる (搭載機はA320Ceo/Neoファミリーのみ)

<u>コラボのメンバーと参加比率</u>

V2500

IAE AG/LLC
スイス法人/米国法人

RTX (米)
(P&W)
66%/59%


JAEC (日)
23%/23%
(国内パートナーは

PW1100G-JM

MTU (独)
11%/18%

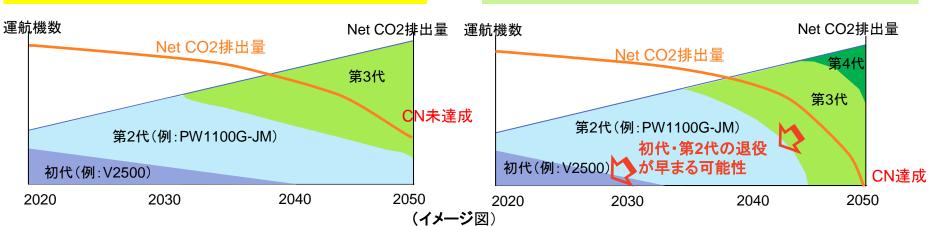
IHI、KHI、MHIAELの3社)

事業の実施体制

日本にとって

- OEMの一員として参画することでエンジンメーカーとしての能力を磨ける。
- 国内3社が結束することにより、事業規模の維持・拡大ができる

IAE事業への継続参画が重要


2. 変遷と今後

製品、ビジネスモデル、参画上の必要能力

CN達成に向けて予想されるシナリオ

初代(V2500) EIS: 1988年

<u>燃費要求</u> 当時の最高水準燃費

ビジネスモデル 新製エンジン販売 交換部品販売

必要能力: 設計·製造 第2代(PW1100G-JM) EIS: 2016年

燃費要求 初代より15%以上改善

<u>ビジネスモデル</u> 左記+包括整備サービス

<u>必要能力:</u> 左記に加えて ・光る技術

- •整備•修理
- •販売金融

第3世代(XXXX) EIS: 2035年~

<u>燃費要求</u> 第2代より15%以上改善

<u>ビジネスモデル</u> 左記+α

必要能力

第4世代(YYYY)

EIS: 2040年~2050年

<u>燃費要求</u> CN達成

<u>ビジネスモデル</u> 左記+β

必要能力

主な3つの必要能力と課題について 次ページ以降に示す

3. 課題 その1 : 光る技術(1/2)

CNに向けて何が変わるのか?

	燃料 (Energy Source)	動力源 (Power Unit)	推力発生器 (Thrustor)
現状	✓ ケロシン	✓ ガスタービン ガスタービン (エン	ダクテッドファン ダクテッド ファン
CNへ 向けた 候補	✓ SAF• バイオ/ゴミ等• PtL(合成燃料)✓ グリーン水素✓ ガリーン水素		✓ ダクテッドファン ✓ オープンファン
	▼ 電力・ バッテリー・ 水素+燃料電池	1 ✓ E - 9 - —)	✓ ダクテッドファン✓ オープンファン✓ プロペラ

➤ SAF及びグリーン水素:

供給量や製造コストに大きな課題があるものの、今後の改善により単通路機以上の旅客機でのCN達成の本命と考えられている

▶ 電力:

エネルギー密度が低いため重量増がネックとなり、リージョナル以下の小型/短距離機への適用が本命と考えられている

3. 課題 その1:光る技術(2/2)

SAFの種類別技術・普及状況

原料系	現状技術レベル	2050年に想定される姿	技術•市場課題
FOGs 廃食用油脂 (廃揚物油·獸脂)	■ 量産開始済(2016年~) 現状唯一の流通SAF Neste(フィンランド)など	■ 全ケロシン需要のうち 4~9%程度を補完可能 ■ 製造コストはケロシンに肉薄可能	■ 廃食油需要が急騰し、供給がひっ迫。取引価格も高騰中。
Oil Crops 燃料専用植物油脂 ^(コーン・パーム・藻類)	■ 技術実証完了・2023~25量産 開始 Gevo(米)など	■ 全ケロシン需要のうち40~ 70%を補完可能 ■ 製造コストはケロシンの2倍程度	■ 栽培コスト低減に課題■ 将来の食料問題への影響も懸念事項
Solid Wastes 廃棄有機物 (都市ゴミ・森林/農業残渣)	■ 技術実証中・2025年頃 量産開始 Fulcrum(米), Alder(米)	■ 全ケロシン需要のうち67~ 100%を補完可能 ■ 製造コストはケロシンの2倍程度	■ 廃棄物の収集・分別コストに 課題■ プロセス生産性低
Power-To-Liquid 合成燃料 (二酸化炭素及び水素)	■ 技術実証開始・2030年頃 量産開始 Total(仏), ExxonMobil(米)	■ 原料際限がなく、全ケロシン需要を代替可能■ 製造コストはケロシンの2倍程度	■ 電力コストの低減■ CO2回収コストの低減

PtL SAFのコスト構造: 現行技術と将来予測

燃料消費量を減らすことで、ケロシンと同等にする

- ①エンジン側の燃費改善が必須
- ②上記はグリーン水素に対しても同様 (ただしグリーン水素に対してはエンジンのみならず タンクをはじめ様々な革新技術が必要)
- ①、②に対して、光る技術を身に着ける必要がある

3. 課題 その2:設計・製造能力の磨き上げ

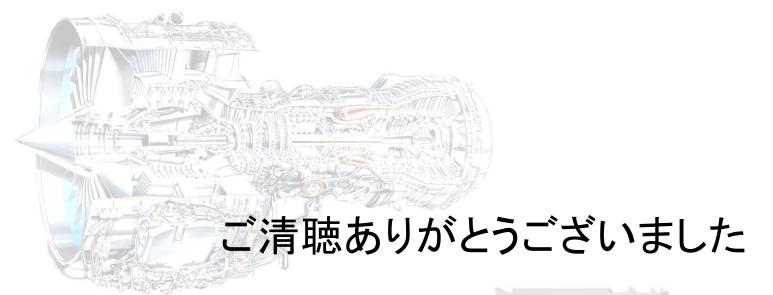
◆ DXへの対応

- 設計・開発・認証そして製造面でのデジタル化は世界的な流れ
- 国際共同事業を行う上で、その能力確保は必須
- 高度なセキュリティーでの大型計算機やデジタルモデルの実証設備等、 インフラ面整備は各企業ベースでは限界

◆ 材料サプライチェーンの強靭化

- ガスタービンやファンが今後も必須
- 海外材料メーカーの寡占化への対応/国内サプライチェーンの強靭化が必要
- チタン合金やニッケル合金の鋳造、鍛造に加えて、日本が強みを持つ 複合材(FRP系およびCMC系)における強靭化必要
- いずれも国内に役者は揃っているが、舞台・脚本が整っていない

ある程度の国の主導/サポートが必要


3. 課題 その3:パートナーとしてのStability

- ◆ 国際コラボ事業を行う上で、参画するパートナーに求められるものは、 能力や競争力のみならず、長期にわたる事業において、同じ目標を共有し、 安定的にパフォーマンスを発揮できる相手であることも重要視される
- ◆ 国内エンジンメーカーは、事業ポートフォリオにおけるエンジンの位置づけに 温度差があり、日本連合として長期にわたるStabilityという面では脆弱性を 否めない

(海外OEMからの、各企業とのバイラテなど分断戦略につながり、 結果として、日本の地位低下を招きかねない)

Stabilityを維持できる日本連合へ

